- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Garny, Hella (2)
-
Ayarzagüena, Blanca (1)
-
Baldwin, Mark P. (1)
-
Birner, Thomas (1)
-
Boone, Chris D (1)
-
Butchart, Neal (1)
-
Butler, Amy H. (1)
-
Bönisch, Harald (1)
-
Castillo, Ariana E (1)
-
Charlton‐Perez, Andrew J. (1)
-
Domeisen, Daniela I. V. (1)
-
Engel, Andreas (1)
-
Garfinkel, Chaim I. (1)
-
Gerber, Edwin P. (1)
-
Haenel, Florian (1)
-
Hegglin, Michaela I. (1)
-
Langematz, Ulrike (1)
-
Laube, Johannes C (1)
-
Linz, Marianna (1)
-
Pedatella, Nicholas M. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Climate models predict that the Brewer–Dobson circulation (BDC) will accelerate due to tropospheric warming, leading to a redistribution of trace gases and, consequently, to a change of the radiative properties of the atmosphere. Changes in the BDC are diagnosed by the so-called “age of air”, that is, the time since air in the stratosphere exited the troposphere. These changes can be derived from a long-term observation-based record of long-lived trace gases with increasing concentration in the troposphere, such as sulfur hexafluoride (SF6). The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) provides the longest available continuous time series of vertically resolved SF6 measurements, spanning 2004 to the present. In this study, a new age-of-air product is derived from the ACE-FTS SF6 dataset. The ACE-FTS product is in good agreement with other observation-based age-of-air datasets and shows the expected global distribution of age-of-air values. Age of air from a chemistry–climate model is evaluated, and the linear trend of the observation-based age of air is calculated in 12 regions within the lower stratospheric midlatitudes (14–20 km, 40–70°) in each hemisphere. In 8 of 12 regions, there was not a statistically significant trend. The trends in the other regions, specifically 50–60 and 60–70° S at 17–20 km and 40–50° N at 14–17 and 17–20 km, are negative and significant to 2 standard deviations. This is therefore the first observation-based age-of-air trend study to suggest an acceleration of the shallow branch of the BDC, which transports air poleward in the lower stratosphere, in regions within both hemispheres.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Baldwin, Mark P.; Ayarzagüena, Blanca; Birner, Thomas; Butchart, Neal; Butler, Amy H.; Charlton‐Perez, Andrew J.; Domeisen, Daniela I. V.; Garfinkel, Chaim I.; Garny, Hella; Gerber, Edwin P.; et al (, Reviews of Geophysics)Abstract Sudden stratospheric warmings (SSWs) are impressive fluid dynamical events in which large and rapid temperature increases in the winter polar stratosphere (∼10–50 km) are associated with a complete reversal of the climatological wintertime westerly winds. SSWs are caused by the breaking of planetary‐scale waves that propagate upwards from the troposphere. During an SSW, the polar vortex breaks down, accompanied by rapid descent and warming of air in polar latitudes, mirrored by ascent and cooling above the warming. The rapid warming and descent of the polar air column affect tropospheric weather, shifting jet streams, storm tracks, and the Northern Annular Mode, making cold air outbreaks over North America and Eurasia more likely. SSWs affect the atmosphere above the stratosphere, producing widespread effects on atmospheric chemistry, temperatures, winds, neutral (nonionized) particles and electron densities, and electric fields. These effects span both hemispheres. Given their crucial role in the whole atmosphere, SSWs are also seen as a key process to analyze in climate change studies and subseasonal to seasonal prediction. This work reviews the current knowledge on the most important aspects of SSWs, from the historical background to dynamical processes, modeling, chemistry, and impact on other atmospheric layers.more » « less
An official website of the United States government
